Gene probe analysis of soil microbial populations selected by amendment with 2,4-dichlorophenoxyacetic acid.

نویسندگان

  • W E Holben
  • B M Schroeter
  • V G Calabrese
  • R H Olsen
  • J K Kukor
  • V O Biederbeck
  • A E Smith
  • J M Tiedje
چکیده

Soils with a history of 2,4-dichlorophenoxyacetic acid (2,4-D) treatment at field application rates and control soils with no prior exposure to 2,4-D were amended with 2,4-D in the laboratory. Before and during these treatments, the populations of 2,4-D-degrading bacteria were monitored by most-probable-number (MPN) enumeration and hybridization analyses, using probes for the tfd genes of plasmid pJP4, which encode enzymes for 2,4-D degradation. Data obtained by these alternate methods were compared. Several months after the most recent field application of 2,4-D (approximately 1 ppm), soils with a 42-year history of 2,4-D treatment did not have significantly higher numbers of 2,4-D-degrading organisms than did control soils with no prior history of treatment. In response to laboratory amendments with 2,4-D, both the previously treated soils and those with no prior history of exposure exhibited a dramatic increase in the number of 2,4-D-metabolizing organisms. The MPN data indicate a 4- to 5-log population increase after one amendment with 250 ppm of 2,4-D and ultimately a 6- to 7-log increase after four additional amendments, each with 400 ppm of 2,4-D. Similarly, when total bacterial DNA from the soil microbial community of these samples was analyzed by using a probe for the tfdA gene (2,4-D monoxygenase) or the tfdB gene (2,4-dichlorophenol hydroxylase) a dramatic increase in the level of hybridization was observed in both soils.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of gene probes to aid in recovery and identification of functionally dominant 2,4-dichlorophenoxyacetic acid-degrading populations in soil.

The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was applied to soils in microcosms, and degradation was monitored after each of five repeated additions. Total DNAs were isolated from soil bacterial communities after each 2,4-D treatment. The DNA samples were analyzed on slot blots and Southern blots by using a tfdA gene probe subcloned from plasmid pJP4 and a Spa probe derived from a diffe...

متن کامل

Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation.

The diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative plasmids in the microbial community of an agricultural soil was examined by complementation. This technique involved mixing a suitable Alcaligenes eutrophus (Rifr) recipient strain with the indigenous microbial populations extracted from soil. After incubation of this mixture, Rifr recipient strains which grow with 2,4-D as the...

متن کامل

Analysis of competition in soil among 2,4-dichlorophenoxyacetic acid-degrading bacteria.

Competition among indigenous and inoculated 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria was studied in a native Kansas prairie soil following 2,4-D additions. The soil was inoculated with four different 2,4-D-degrading strains at densities of 10(3) cells per g of soil; the organisms used were Pseudomonas cepacia DBO1(pJP4) and three Michigan soil isolates, strain 745, Sphingomonas...

متن کامل

Detection and characterization of plasmid pJP4 transfer to indigenous soil bacteria.

Prior to gene transfer experiments performed with nonsterile soil, plasmid pJP4 was introduced into a donor microorganism, Escherichia coli ATCC 15224, by plate mating with Ralstonia eutropha JMP134. Genes on this plasmid encode mercury resistance and partial 2, 4-dichlorophenoxyacetic acid (2,4-D) degradation. The E. coli donor lacks the chromosomal genes necessary for mineralization of 2,4-D,...

متن کامل

The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils.

Soils co-contaminated with metals and organics present special problems for remediation. Metal contamination can delay or inhibit microbial degradation of organic pollutants such that for effective in situ biodegradation, bioaugmentation is necessary. We monitored the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) or 3-chlorobenzoate (3-CB) in two different soils with and without cadmium...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 58 12  شماره 

صفحات  -

تاریخ انتشار 1992